弹性形变和塑性形变的区别 弹性形变和塑性形变有什么区别
发布时间: 7/13/2023 7:25:39 AM 来源: 爷、百毒不侵
弹性变形与塑性变形的主要区别是
一、弹性和塑性的概念
弹性形变和塑性形变的区别 弹性形变和塑性形变有什么区别
可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。
根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elasticity)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面:
1)变形是否可恢复:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性变形则是不可恢复的,塑性变形过程是一个不可逆的过程。
2)应力和应变之间是否一一对应:在弹性阶段,应力和应变之间存在一一对应的单值函数关系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)
工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。
二、弹塑性力学的研究对象及其简化模型
弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
构成实际固体的材料种类很多,它们的性质各有差异,为便于研究,往往根据材料的主要性质做出某些假设,忽略一些次要因素,将它抽象为理想的“模型”。在弹性理论中,实际固体即被抽象为所谓的“理想弹性体”,它是一个近似于真实固体的简化模型。“理想弹性”的特征是:在一定的温度下,应力和应变之间存在一一对应的关系,而且与加载过程无关,与时间无关。
弹性变形与塑性变形有什么不同
弹性变形是在物体受到外力时,其内部只存在晶格变形而无位移,外力消失后,晶格复位,物体形状也随之复原
塑性变形是受外力后,其内部不単有晶格变形而且产生晶格移位 ,外力消失后,晶格不能复位,物体形状也不能复原.
什么叫弹性变形?什么叫塑性变形?
1、弹性变形是材料在外力作用下产生变形,当外力去除后变形完全消失的现象。弹性变形分为线弹性、非线弹性和滞弹性三种。线弹性变形服从虎克定律,且应变随应力瞬时单值变化。非线弹性变形不服从虎克定律,但仍具有瞬时单值性。滞弹性变形也符合虎克定律,但并不发生在加载瞬时,而要经过一 段时间后才能达到虎克定律所对应的稳定值。
2、塑性变形是一种不可自行恢复的变形。工程材料及构件受载超过弹性变形范围之后将发生永久的变形,即卸除载荷后将出现不可恢复的变形,或称残余变形,这就是塑性变形。不是任何工程材料都具有塑性变形的能力。金属、塑料等都具有不同程度的塑性变形能力,故可称为塑性材料。
扩展资料:
材料在外力作用下产生应力和应变(即变形)。当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。
当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。
弹性形变与形变的区别
我们把物体发生的伸长、缩短、弯曲等变化称为形变。形变有弹性形变和塑性形变(范性形变)两种。形变是包括弹性形变的,弹性形变例如橡皮筋,在弹性范围内,拉开一定距离后松开,是可以恢复原状的。
什么是塑性形变和弹性形变
一、塑性形变
塑性变形是一种不可自行恢复的变形。工程材料及构件受载超过弹性变形范围之后将发生永久的变形,即卸除载荷后将出现不可恢复的变形,或称残余变形,这就是塑性变形。不是任何工程材料都具有塑性变形的能力。金属、塑料等都具有不同程度的塑性变形能力,故可称为塑性材料。玻璃、陶瓷、石墨等脆性材料则无塑性变形能力。工程构件设计吋一般不允许出现明显的塑性变形,否则构件将不能维持原先的形状甚至发生断裂。
二、弹性形变
在外力的作用下,物体发生形变,当外力撤消后,物体能恢复原状,则这样的形变叫做弹性形变。此时对与它接触的物体会产生力的作用,这种力叫做弹力。如弹簧的形变等。
在外力的作用下,物体发生形变,当外力撤去后,物体不能恢复原状,则称这样的形变叫做塑性形变,如橡皮泥的形变等。因物体
受力情况不同,在弹性限度内,弹性形变有四种基本类型:即拉伸和压缩形变;切变;弯曲形变和扭转形变。
扩展资料
塑性形变和弹性形变产生的机理:
1、塑性形变
固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。由于多种原因,晶粒内的原子结构会存在各种缺陷。原子排列的线性参差称为位错。由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,原子的排列发生滑移和孪晶。
滑移使一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。原子移动的距离和孪晶面的距离成正比。两个孪晶面之间的原子排列方向改变,形成孪晶带。滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。
多晶体的晶粒边界是相邻晶粒原子结构的过渡区。晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达 300~3000%的延伸率而不破裂。
2、弹性形变
在常温和常压之下,同时在受到短时间的应力作用之下,大多数的岩石,都可以显示出弹性的性质,直到断裂(Rupture)为止。不过在岩石的弹性限度之内,当应力给移去之后,它们又将恢复原来的形状。岩石的弹性限度或屈服点,亦即相当于它们在断裂时所受到的应力。
假如有一作圆柱形的岩石体,若在平行于长轴的方向,受到拉力的作用,那么这一岩石体将会为之增长;反之若在平行于长轴的方向,受到压力的作用,则这一岩石体将会为之缩短。我们从应力和应变的比例当中,便可以量测出岩石在纵长方向抵抗变形的性质。把应力除以应变所得的结果,叫做杨氏模数(Young’s Modulus)或弹性模数(Modulus of Elasticity)。
参考资料:百度百科-塑性形变
百度百科-弹性形变
什么是塑性变形和弹性变形
一、变形的结果不同
塑性变形:材料在外力作用下产生塑性变形后,当外力去除后不可自行恢复。
弹性变形:材料在外力作用下产生弹性变形后,当外力去除后变形完全消失恢复原状。
二、能产生变形的材料不同
塑性变形:金属、塑料等都具有不同程度的塑性变形能力的材料。
弹性变形:高分子材料等都具有弹性变形能力的材料。
三、产生变形的原因不同
塑性变形:晶粒内的原子结构会存在各种缺陷,由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,滑移使一部分晶粒滑移形成滑移带,很多滑移带集合起来就成为可见的变形。
弹性变形:物体受外力作用时,就会产生变形,如果将外力去除后,物体能够完全恢复它原来的形状和尺寸。
扩展资料
塑性变形的影响因素
1、加工硬化:塑性变形引起位错增殖,位错密度增加,不同方向的位错发塑性变形力学原理生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。
2、内应力:塑性变形在金属体内的分布是不均匀的,所以外力去除后,各部分的弹性恢复也不会完全一样,这就使金属体内各部分之间产生相互平衡的内应力,即残余应力。残余应力降低零件的尺寸稳定性,增大应力腐蚀的倾向。
3、各向异性:金属经冷态塑性变形后,晶粒内部出现滑移带或孪晶带。各晶粒还沿变形方向伸长和扭曲。沿变形方向的强度、塑性和韧性都比横向的高。当金属在热态下变形,由于发生了再结晶,晶粒的取向会不同程度地偏离变形方向。
4、再结晶和回复:经过再结晶处理后,冷变形引起的晶粒畸变以及由此引起的加工硬化、残余应力等都会完全消除。
参考资料来源:百度百科-塑性变形
百度百科-弹性变形