spss相关性分析(spss相关性分析图怎么做)
发布时间: 5/5/2023 7:27:08 PM 来源: 自我清欢
spss如何分析两组数据的相关性?
用spss分析两组数据的相关性步骤如下:
1、第一步,电脑安装SPSS软件包,最好使用最新版本,功能比较齐全。打开SPSS软件,导入你需要分析的数据,这里以excel数据为例子。依次点击【文件】-【打开】-【数据】。
2、第二步,选择excel数据,确认导入后,查看数据是否导入正常。
3、第三步,进行相关性分析。依次点击【分析】-【相关】-【双变量】。
4、第四步,然后,把变量从左侧选择到右侧变量框里面,勾选person相关,双侧检验等等。
5、第五步,点确定,相关性的结果就在输出文档里面了。你也可以把结果复制导出到word或者excel。
这样就完成了用spss分析两组数据的相关性。
怎么用SPSS做相关性分析啊?
1、打开SPSS软件,输入两列数据,如下图所示;
2、用鼠标在工具栏上一次点击“分析”----”相关”----“双变量”,如下图所示;
3、进入要分析的变量,将两个变量都选定,相关系数选择Pearson,显著性检验选择双侧检验,标记显著性相关,如下图所示;
4、选择其他相关需要,如均值与标准差,缺失值的选择,然后点击继续,如下图所示;
5、在bootstrap菜单中打勾,置信区间选择百分位,抽样选择简单,然后点击确定,如下图所示;
6、等待软件分析完成后就可以得到描述性分析和相关性分析的数据了,如下图所示。
SPSS常用的相关性分析方法解析(转载)
相关性分析旨在分析两组数据之间是否相互影响,彼此是否独立的变动。SPSS内部提供了多种分析数据相关性的方法:卡方检验(Chi-SquareTest),Pearson相关系数计算,Spearman相关系数计算和Kendall的tau-b(K)相关系数计算。这四种分析方法适用于不同的数据类型,下面向大家介绍常用的SPSS相关性分析方法。
1.卡方检验(Chi-SquareTest)
卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,进而分析两个分类变量的相关性。
卡方检验(Chi-SquareTest)适用于不服从正态分布的数据,两组变量是无序的。使用SPSS进行卡方检验的操作方法,大家可以登录SPSS中文网站进行学习,这里仅作原理性的介绍。如图1是某种药物单独使用和药物与放疗同时使用时,治疗是否有效的卡方检验结果。
图1某地某种疾病发病人数统计
个案处理摘要显示了有效数据和无效数据的数量。VAR00001*VAR00002交叉表显示各变量对应的频数,VAR00001列1代表单独使用药物,2代表药物与放疗同时使用,VAR00002行1代表有疗效的人数,2代表无疗效的人数。
行列变量为各为二组,自由度为(2-1)×(2-1)=1,Pearsonχ2值为22.475,显著性数值为0.000小于0.05,有显著性差异,不能接受无关假设,即单独使用药物与药物放疗同时进行有显著性差异。
2.Pearson相关系数计算
Pearson相关系数用于评估两组数据是否符合线性关系,不能用于符合曲线关系的数据,线性相关越强,Pearson相关系数就越接近1(线性递增)或-1(线性递减)。图2为一组数据的线性相关性检验,可以看出,Peason相关系数0.984,表明两者有较强的线性相关性,一般认为<0.3无相关性,0.3~0.7弱相关性,>0.7较强的相关性。
图2Pearson检验结果
3.Spearman相关系数计算
Spearman相关系数适用于不满足线性关系,且不满足正态分布的数据,如图3所示,实际这是两组随机产生的数据,用Spearman相关系数计算时,结果为0.257,<0.3无相关性,与Pearson相关系数类似,<0.3不相关,0.3~0.7为弱相关,>0.7为强相关。
图3Spearman相关系数计算
4.Kendall的tau-b(K)相关系数计算
进行Kendall的tau-b(K)相关分析,需要满足下列3个条件:
1.两个变量是有序分类变量;
2.两个变量相对应的研究对象是一定的。
例如调查工资与学历之间的关系,两个变量学历和收入都是等级变量,符合条件1;两个变量均对应同一研究对象:一个区域内的所有工作的成年人。符合条件2。收入等级分别为1高收入,2中收入,3低收入,学历等级分别为1高学历,2中等学历,3低学历。结果分析如图4所示。相关系数为0.480,有弱的相关性。
图4Kendalltau-b系数计算
对于不同种类的数据,应采用不同的统计方法进行相关性分析,SPSS内置了丰富的统计计算功能,可以充分满足不同统计数据的使用需求。
spss如何分析两两相关性问题?
1、首先我们打开电脑里的spss软件打开整理好的数据文件。
2、选择面板上方“分析”选项,点击“相关”,这时会弹出三个选项,如果只需要进行两个变量的相关分析就选择“双变量”,多个变量交叉分析则选择“偏相关“,在这里示范“双变量”分析的方法。
3、进入页面后,将需要分析的两个变量转换到右边变量框中,点击确定。
spss相关性分析(spss相关性分析图怎么做)
4、确定后得出的结果,呈显著相关。
5、如果需要所有变量的两两相关分析数据,则将所有变量转移到变量框中,点击确定。
6、这样就能得出所有变量间两两相关是否显著的结果了。
如何用spss做相关性分析
打开SPSS软件;点击“开始”按钮,双击“SPSS ”软件。
导入数据:点击左上角“文件”-----“打开”-----“数据”,并选择你的数据
如果为spss数据可以直接导入,若为excel 格式,需要在“文件类型”框中选择“excel格式” 扩展资料
开始做数据分析:
在工具栏处,点击:
“分析”----”相关”----“双变量”,如下图所示,则开始进行变量的选择
如图,需要先确定要分析的变量,首先将两个变量放入“变量”框中。
此时,需要注意,要分析哪几个变量就只能选择那几个变量,而不能将所有的变量选入;
当然,如果分析的是多有的变量,也可以同时将所有的变量选入
spss相关性分析(spss相关性分析图怎么做)
spss相关性分析(spss相关性分析图怎么做)
然后,选择在“相关系数”框中选择“Pearson”。
因为,这里的两个变量为连续性的变量,因此采用pearson 相关分析;
若为两个分类变量,或者一个分类变量一个连续性的变量,则可以用Spearman 相关分析
选择好变量之后,如果需要对数据进行一定的描述,或者查看,可以打开右上角的按钮,即选择“选项”,如下图所示
大部分分析需要对原始数据进行统计描述,即如果需要进行描述性分析,可以选择均值和标准差,如上图所示的.mean (均值)和 sd (标准差),分别对数据的大小和离散程度作出一定的描述,并点击“确定按钮”
如果需要对数据进行模拟分析,则可以选择右上角的“bootsTrap”模拟分析,打开后如下图所示。
其中样本数为需要模拟的总共的次数,可以自己定义;后面的种子数,是开始模拟随机数字的起始种子数,同样可以自行定义。其中的置信区间为CI, 即结果的可信区间
单击确定后,再output窗口中可以看到:结果如下所示。
结果给出两个分析,一个是描述性分析,为以下的第二个图,和pearson 相关分析结果为第一个图。
一般结果,应该先描述第二个图的表格含义,
其中mean表示均值,为两个连续性变量的均数;第二个值为Std. Deviation 表示标准差,即原始数据的标准差
第一个图为pearson correlations表格为相关系数表
其中pearson correlation 为相关系数
sig 为P 值(<0.05为有显著性意义)
N 为样本量
如何用spss做相关性分析??要求详细步骤!
1、在spss的主界面上输入数据以后,通过分析那里点击非参数检验中的相关样本。
2、这个时候来到一个新的窗口,设置检验对并选择威尔科克森。
3、下一步如果没问题,就直接进行确定。
4、这样一来会生成详细的数据结果,即可用spss做相关性分析了。