矩阵范数怎么计算 矩阵范数计算题

发布时间: 9/17/2023 10:23:09 AM 来源: 遥远的她

矩阵的范数怎么求

一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。所以矩阵范数通常也称为相容范数。

矩阵范数怎么计算 矩阵范数计算题

如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。

注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

求矩阵的范数的公式是什么?

||a|| = √(a,a) = √a^Ta

其中 (a,a) 是a与a的内积,是a的各分量的平方之和

如a=(X1,X2,X3),则||a||=√X1^2+X2^2+X3^3

些矩阵范数不可以由向量范数来诱导,比如常用的Frobenius范数(也叫Euclid范数,简称F-范数或者E-范数):║A║F= ( ∑∑ aij^2 )^1/2 (A全部元素平方和的平方根)。

容易验证F-范数是相容的,但当min{m,n}>1时F-范数不能由向量范数诱导(||E11+E22||F=2>1)。可以证明任一种矩阵范数总有与之相容的向量范数。

扩展资料

谱半径和范数的关系是以下几个结论:

定理1:谱半径不大于矩阵范数,即ρ(A)≤║A║。

因为任一特征对λ,x,Ax=λx,可得Ax=λx。两边取范数并利用相容性即得结果。

定理2:对于任何方阵A以及任意正数e,存在一种矩阵范数使得║A║

定理3(Gelfand定理):ρ(A)=lim_{k->∞} ║A^k║^{1/k}。

利用上述性质可以推出以下两个常用的推论:

推论1:矩阵序列 I,A,A^2,…A^k,… 收敛于零的充要条件是ρ(A)<1。

推论2:级数 I+A+A^2+... 收敛到(I-A)^{-1}的充要条件是ρ(A)<1。

参考资料来源:百度百科-矩阵范数

矩阵的1范数是怎么求?如何求矩阵的2范数?

矩阵的1范数:将矩阵沿列方向取绝对值求和,取最大值作为1范数。例如如下的矩阵,1范数求法如下:

对于实矩阵,矩阵A的2范数定义为:A的转置与A乘积的最大特征值开平方根。对于以上矩阵,直接调用函数可以求得2范数为16.8481,使用定义计算的过程,说明计算是正确的。

对于复矩阵,将转置替换为共轭转置,矩阵A的∞范数定义为先沿着行方向取绝对值之和,取最大值(与1范数类似)。

扩展资料:

注意事项:

1、应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。

2、矩阵范数却不存在公认唯一的度量方式, 一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性。

3、如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。

4、如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。

参考资料来源:百度百科-矩阵

参考资料来源:百度百科-矩阵乘法

矩阵的范数怎么求

工具/材料

matlab(不强制)

矩阵的1范数:将矩阵沿列方向取绝对值求和,然后取最大值作为1范数。例如如下的矩阵,它的1范数求法如下:

使用matlab计算结果如下:

对于实矩阵,矩阵A的2范数定义为:A的转置与A乘积的最大特征值开平方根。对于以上矩阵,直接调用函数可以求得2范数为16.8481,如上图所示。使用定义计算的过程如下图。说明我们的计算是正确的。

对于复矩阵,将转置替换为共轭转置,其他步骤与上一步相同。矩阵A的∞范数定义为先沿着行方向取绝对值之和,然后取最大值(与1范数类似)。使用matlab计算如上图,使用定义验证如下图。

带有虚数的矩阵范数怎么求

利用F范数的定义来证明。

设E的第i行、第j列元素为Eij,s的第i个元素为si,数值(s^T)*s=C,那么并且有因此只要证明

因此上式成立,待证命题也就成立。

矩阵的范数怎么计算

矩阵的范数计算方法:计算矩阵的范数公式:║A║1=max。矩阵范数(matrixnorm)是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。

相关推荐