求特征值的化简技巧

发布时间: 9/18/2023 3:39:05 PM 来源: 失眠梦°Triste

你好,很高兴为你解答!

R1+r2

R3-2r2

也只能得出两个0,这样应该已经是最简单的算法了。

因为特征值一般比较简单,所以三次方程也可以快速写成因式相乘的形式的。

这题求得的三次方程式入^3+6入^2+11入+6=0.

通过特殊值,可以轻易知道入=-1时方程成立。

那么三次方程肯定能抽出(入+1)

可以变为入(入^2+6入+5)+6(入+1)=0

(入+1)(入^2+5入+6)=0

(入+1)(入+2)(入+3)=0

扩展资料:

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν

其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。

当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为A矩阵未必是对称的。

相关推荐