增广矩阵的秩 增广矩阵的秩是什么意思

发布时间: 9/19/2023 10:46:47 AM 来源: 创新助手

齐次线性方程组的增广矩阵的秩怎么求啊?

假定对于一个含有n个未知数m个方程的非齐次线性方程组而言,

若n<=m, 则有:

1)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均等于方程组中未知数个数n的时候,方程组有唯一解

2)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均小于方程组中未知数个数n的时候,方程组有无穷多解

3)当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解

(注:由于对于矩阵的秩有:max{R(A),R(B)}<=R(A,B),故不存在其它情形)

若n>m时,则按照上述讨论,

4)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等的时候,方程组有无穷多解

5)当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解

增广矩阵的秩与系数矩阵的秩的区别?

含义不同。增广矩阵的秩代表对应非齐次方程解向量的个数。系数矩阵的秩代表系数对应的齐次方程的解向量个数。

增广矩阵的秩 增广矩阵的秩是什么意思

系数矩阵

增广矩阵的秩 增广矩阵的秩是什么意思

是矩阵中的众多类型之一,简单来说系数矩阵就是将方程组的系数组成矩阵来计算方程的解。常常用来表示一些项目的数学关系,比如通过此类关系系数矩阵来证明各项目的正反比关系。

在解线性方程组的时候,对系数矩阵进行的一个增广矩阵,切勿以为增广矩阵只是右端添加一列,其实是在原矩阵的右端添加一个矩阵,而线性方程组的右端恰好是一个列数为1的矩阵。

增广矩阵与系数矩阵的秩分别怎么看?

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目

增广矩阵通常用于判断矩阵的解的情况:

时,方程组无解;

增广矩阵的秩 增广矩阵的秩是什么意思

时,方程组有唯一解;

时,方程组无穷解;

不可能,因为增广矩阵的秩大于等于系数矩阵的秩。

线性代数中,增广矩阵的秩与原矩阵的秩,两者间是什么关系?在判断方程组有无解中怎么用?

矩阵秩的性质:r(A)≤r(A,B)≤r(A)+r(B),r(B)≤r(A,B)≤r(A)+r(B)。

所以方程组Ax=b的矩阵A与(A,b)的秩的关系是:r(A)≤r(A,b)≤r(A)+r(b)=r(A)+1。当方程组Ax=b无解时,r(A)≠r(A,b),此时r(A,b)=r(A)+1。

系数矩阵的秩与增广矩阵的秩?

首先,初等行变换不改变矩阵的秩,而秩是非零子式的最大阶数。系数矩阵,就是增广矩阵去掉最后一列,则它的可以如图判定。

相关介绍:

系数矩阵是矩阵中的众多类型之一,简单来说系数矩阵就是将方程组的系数组成矩阵来计算方程的解。

系数矩阵常常用来表示一些项目的数学关系,比如通过此类关系系数矩阵来证明各项目的正反比关系。

增广矩阵(又称扩增矩阵)就是在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值。

增广矩阵的秩与系数矩阵的秩是什么?

增广矩阵的秩代表对应非齐次方程解向量的个数,系数矩阵的秩代表系数对应的齐次方程的解向量个数。

系数矩阵是矩阵中的众多类型之一,简单来说系数矩阵就是将方程组的系数组成矩阵来计算方程的解。系数矩阵常常用来表示一些项目的数学关系,比如通过此类关系系数矩阵来证明各项目的正反比关系。

矩阵的概念提出

矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。

1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。

相关推荐